Thông tin chung
Khóa học đầu tiên của Chương trình Khoa học Dữ liệu được xây dựng với mục đích cung cấp một cái nhìn khái quát cùng các kiến thức nền tảng và thiết yếu về Khoa học Dữ liệu. Trong khóa học này, các chuyên gia Khoa học dữ liệu sẽ giới thiệu tới người học các khái niệm cốt lõi về khoa học dữ liệu, những nhiệm vụ chính của nhà khoa học dữ liệu cũng như các công cụ và thuật toán cơ bản được sử dụng thường xuyên. Người học cũng có cơ hội khám phá những kỹ năng cần thiết để theo đuổi lĩnh vực này. Bạn sẽ tìm hiểu những gì một doanh nghiệp cần chuẩn bị để bắt đầu với khoa học dữ liệu, cũng như những phẩm chất phân biệt các nhà khoa học dữ liệu với các ngành nghề khác. Quan trọng hơn, người học sẽ tìm hiểu về kỹ năng phân tích và vai trò quan trọng của các nhà khoa học dữ liệu trong quá trình này, cũng như về cách thức “kể chuyện” thông qua dữ liệu (story telling) và truyền đạt kết quả của dự án một cách hiệu quả.
Mục tiêu môn học
Sau khi học xong môn này, học viên sẽ đạt được các chuẩn kiến thức, kỹ năng đầu ra như sau:
Hiểu các khái niệm cơ bản của Khoa học Dữ liệu.
Diễn giải được các chủ đề và ứng dụng của chúng trong KHDL.
Hiểu và thực hành với các công cụ dành cho Khoa học Dữ liệu: Python, Jupyter Notebook, Numpy, Pandas, …
Hiểu phương pháp luận được sử dụng trong Khoa học Dữ liệu, các bước giải quyết vấn đề KHDL từ xác định vấn đề, thu thập và phân tích dữ liệu, xây dựng mô hình, thuật toán và phản hồi sau khi mô hình được phát triển và áp dụng.
Hiểu các khái niệm cơ bản về thống kê mô tả và xác suất được sử dụng trong KHDL.
Trải nghiệm học tập
Phần 1: Khoa học dữ liệu là gì?
Bài 1 – Định nghĩa về Khoa học dữ liệu và các công việc của nhà Khoa học dữ liệu
Bài 2 – Các chủ đề trong Khoa học dữ liệu
Bài 3 – Khoa học dữ liệu trong business
Bài 4 – Công cụ trong Khoa học dữ liệu – Jupyter Notebooks
Lab 1 – Jupyter Notebook
Progress Test 1
Phần 2: Phương pháp luận Khoa học dữ liệu
Bài 5 – Từ bài toán đến hướng tiếp cận giải quyết
Lab 2 – Từ bài toán đến hướng tiếp cận giải quyết
Bài 6 – Từ xác định yêu cầu đến thu thập các nguồn dữ liệu
Lab 3 – Từ xác định yêu cầu đến thu thập các nguồn dữ liệu
Bài 7 – Từ hiểu dữ liệu đến chuẩn bị dữ liệu
Lab 4 – Từ hiểu dữ liệu đến chuẩn bị dữ liệu
Bài 8 – Từ mô hình hóa đến việc đánh giá mô hình
Lab 5 – Từ mô hình hóa đến việc đánh giá mô hình
Bài 9 – Từ triển khai mô hình đến nhận phản hồi
Project 1 – Vòng đời của một dự án Data Science
Phần 3: Thống kê và Xác suất
Bài 10 – Thống kê mô tả (Descriptive statistics)
Bài 11 – Tương quan và Hồi quy
Lab 6 – Thống kê cơ bản với Python
Bài 12 – Xác suất
Bài 13 – Phân phối xác suất
Lab 7 – Xác suất cơ bản với Python
Progress Test 2
Phần 4: Python cho Khoa học dữ liệu
Bài 14 – Python cơ bản: Cấu trúc dữ liệu
Lab 8 – Python cơ bản
Bài 15 – Python nâng cao: OOP và API
Lab 9 – OOP với Python
Lab 10 – Khởi tạo API cơ bản
Bài 16 – Numpy trong Python
Bài 17 – Làm việc với dữ liệu trong Pandas
Lab 12 – Làm việc với dữ liệu trong Python
Project 2 – Tính toán và phân tích điểm thi
Đặc điểm môn học
Để bắt đầu, các bạn nên dành một vài phút khám phá môn học và cấu trúc chung. Môn học sẽ có 4 phần với 17 bài học. Xuyên suốt các bài học và cuối mỗi học phần, các bài thực hành Lab và bài tập lớn (Project) sẽ giúp các bạn tăng cường việc ghi nhớ và vận dung lý thuyết đã học vào các bài toán thực tế. Để việc học tập được hiệu quả, hãy luôn trau dồi kiến thức, không ngừng học hỏi, nghiên cứu và lập cho mình một kế hoạch học tập hợp lý để hoàn thành khóa học một cách xuất sắc.
Trong thời gian học (dự kiến là 6 tuần), việc phân bổ tuần học là rất quan trọng. Nếu các bạn có bất cứ câu hỏi nào hãy kết nối với Mentor để được giải đáp.
Nguồn học liệu
Trong thời đại hiện nay, mỗi môn học đều có nhiều nguồn tài liệu liên quan kể cả sách in và online, FUNiX Way không quy định một nguồn học liệu cụ thể mà khuyến cáo để học viên chọn được nguồn phù hợp nhất cho mình. Trong quá trình học từ nhiều nguồn khác nhau theo lựa chọn cá nhân đó, khi sinh viên phát sinh câu hỏi thì sẽ được kết nối nhanh nhất với mentor để được giải đáp. Toàn bộ phần đánh giá bao gồm các câu hỏi trắc nghiệm, bài tập, dự án và thi vấn đáp do FUNiX thiết kế, xây dựng và thực hiện.
Các môn học của FUNiX không quy định bắt buộc tài liệu học tập, sinh viên có thể chủ động tìm và học từ bất kỳ nguồn nào phù hợp, kể cả sách in hay nguồn học liệu online (MOOC) hay các website. Việc sử dụng các nguồn đó do học viên chịu trách nghiệm và đảm bảo tuân thủ các chính sách của chủ sở hữu nguồn, trừ trường hợp họ có sự hợp tác chính thức với FUNiX. Nếu cần hỗ trợ, học viên có thể liên hệ phòng đào tạo FUNiX để được hướng dẫn.
Dưới đây là một số nguồn học liệu của môn học mà học viên có thể tham khảo sử dụng. Việc liệt kê nguồn dưới đây không nhất thiết hàm ý rằng FUNiX có sự hợp tác chính thức với chủ sở hữu của nguồn: Coursera, tutorialspoint, edX Training, or Udemy.