So sánh giữa DataOps và Quản lý dữ liệu truyền thống

So sánh giữa DataOps và Quản lý dữ liệu truyền thống

Chia sẻ kiến thức 08/07/2023

Về cốt lõi, DataOps là một tập hợp các phương pháp và công cụ nhằm cải thiện tốc độ, độ chính xác và độ tin cậy của phân tích dữ liệu bằng cách hợp lý hóa đường dẫn dữ liệu.

Trong bài viết này, chúng ta sẽ khám phá những điểm khác biệt chính giữa DataOps và quản lý dữ liệu truyền thống, đồng thời thảo luận lý do tại sao các tổ chức nên cân nhắc áp dụng phương pháp mới này.

Trong thế giới dựa trên dữ liệu ngày nay, các tổ chức ngày càng dựa vào dữ liệu để đưa ra quyết định sáng suốt, thúc đẩy đổi mới và tạo lợi thế cạnh tranh. Do đó, nhu cầu quản lý dữ liệu hiệu quả và hiệu quả chưa bao giờ quan trọng hơn thế. DataOps, một cách tiếp cận tương đối mới để quản lý dữ liệu hứa hẹn sẽ thay đổi cách các tổ chức xử lý dữ liệu của họ. Nhưng DataOps chính xác là gì và nó khác với các phương pháp quản lý dữ liệu truyền thống như thế nào? Trong bài viết này, chúng ta sẽ khám phá những điểm khác biệt chính giữa DataOps và quản lý dữ liệu truyền thống, đồng thời thảo luận lý do tại sao các tổ chức nên cân nhắc áp dụng phương pháp mới này.

DataOps là gì?

Về cốt lõi, DataOps là một tập hợp các phương pháp và công cụ nhằm cải thiện tốc độ, độ chính xác và độ tin cậy của phân tích dữ liệu bằng cách hợp lý hóa đường dẫn dữ liệu. Nó thực hiện điều này bằng cách áp dụng các nguyên tắc từ sản xuất DevOps, Agile và Lean vào quy trình quản lý dữ liệu. Mục tiêu của DataOps là cho phép các tổ chức truy cập, phân tích và sử dụng dữ liệu của họ một cách nhanh chóng và dễ dàng, cuối cùng giúp đưa ra quyết định tốt hơn và cải thiện kết quả kinh doanh.

Ngược lại, quản lý dữ liệu truyền thống thường liên quan đến cách tiếp cận thủ công và im lặng hơn để xử lý dữ liệu. Điều này có thể dẫn đến một quy trình chậm chạp, dễ mắc lỗi, khó theo kịp nhu cầu thay đổi nhanh chóng của các doanh nghiệp hiện đại. Khi các tổ chức tiếp tục tạo và sử dụng nhiều dữ liệu hơn bao giờ hết, những hạn chế của quản lý dữ liệu truyền thống ngày càng trở nên rõ ràng.

DataOps
DataOps và Quản lý dữ liệu truyền thống có nhiều điểm khác biệt (ảnh: zaloni.com)

Sự khác biệt giữa DataOps và Quản lý dữ liệu truyền thống

DataOps và Quản lý dữ liệu truyền thống có nhiều điểm khác biệt đáng kể trong lĩnh vực quản lý dữ liệu.

Cách tiếp cận cộng tác tương ứng

Một trong những điểm khác biệt chính giữa DataOps và quản lý dữ liệu truyền thống nằm ở cách tiếp cận cộng tác tương ứng của chúng. DataOps nhấn mạnh sự hợp tác đa chức năng giữa các kỹ sư dữ liệu, nhà khoa học dữ liệu và các bên liên quan trong kinh doanh. Cách tiếp cận hợp tác này giúp phá vỡ các silo và đảm bảo rằng mọi người tham gia vào đường ống dữ liệu đều hiểu rõ về các mục tiêu và yêu cầu của dự án. Ngược lại, quản lý dữ liệu truyền thống thường liên quan đến các nhóm riêng biệt làm việc độc lập, điều này có thể dẫn đến thông tin sai lệch, không hiệu quả và thiếu sự liên kết giữa dữ liệu và mục tiêu kinh doanh.

Tập trung và tự động hoá

Một sự khác biệt đáng kể khác giữa DataOps và quản lý dữ liệu truyền thống là tập trung vào tự động hóa. DataOps tìm cách tự động hóa càng nhiều đường dẫn dữ liệu càng tốt, từ việc nhập và chuyển đổi dữ liệu đến phân tích và trực quan hóa. Điều này không chỉ giúp giảm rủi ro do lỗi của con người mà còn cho phép các tổ chức đáp ứng nhanh chóng các nhu cầu kinh doanh đang thay đổi. Mặt khác, quản lý dữ liệu truyền thống thường dựa vào các quy trình thủ công có thể chậm và dễ xảy ra lỗi.

Cải tiến và lặp lại

DataOps cũng nhấn mạnh vào cải tiến và lặp lại liên tục. Bằng cách thường xuyên theo dõi và đo lường hiệu suất của đường ống dữ liệu, những người thực hành DataOps có thể xác định các khu vực cần cải thiện và nhanh chóng triển khai các thay đổi. Cách tiếp cận lặp đi lặp lại này giúp đảm bảo rằng đường truyền dữ liệu vẫn linh hoạt và có thể thích ứng, ngay cả khi nhu cầu dữ liệu của tổ chức phát triển. Ngược lại, các phương thức quản lý dữ liệu truyền thống thường thiếu sự tập trung vào việc cải tiến liên tục, điều này có thể dẫn đến một hệ thống dữ liệu cứng nhắc và không linh hoạt.

Khuyến khích đổi mới và thử nghiệm

Cuối cùng, DataOps khuyến khích văn hóa thử nghiệm và đổi mới. Bằng cách thúc đẩy một môi trường cộng tác nơi các chuyên gia dữ liệu được trao quyền để thử các phương pháp tiếp cận mới và học hỏi từ những sai lầm của họ, DataOps giúp thúc đẩy sự đổi mới và khám phá những hiểu biết mới từ dữ liệu. Tuy nhiên, quản lý dữ liệu truyền thống thường tập trung vào việc duy trì hiện trạng và tuân thủ các quy trình đã thiết lập, điều này có thể kìm hãm sự sáng tạo và hạn chế giá trị tiềm năng của dữ liệu.

Kết luận

Tóm lại, DataOps thể hiện sự khác biệt đáng kể so với các phương pháp quản lý dữ liệu truyền thống, cung cấp một cách tiếp cận nhanh nhẹn, hợp tác và tự động hơn để xử lý dữ liệu. Khi các tổ chức tiếp tục vật lộn với những thách thức trong việc quản lý và tận dụng dữ liệu của họ, việc áp dụng các nguyên tắc DataOps có thể giúp hợp lý hóa quy trình cung cấp dữ liệu, cải thiện quá trình ra quyết định và thúc đẩy đổi mới. Mặc dù có thể yêu cầu thay đổi tư duy và áp dụng các công cụ cũng như quy trình mới, nhưng những lợi ích tiềm năng của DataOps khiến nó trở thành một lựa chọn hấp dẫn cho các tổ chức muốn dẫn đầu trong thế giới dựa trên dữ liệu ngày nay.

Quỳnh Anh (dịch từ Ts2.space: https://ts2.space/en/dataops-vs-traditional-data-management-whats-the-difference/)

 

Tin liên quan:

ĐĂNG KÝ TƯ VẤN HỌC LẬP TRÌNH TẠI FUNiX

Bình luận (
0
)

Bài liên quan

  • Tầng 0, tòa nhà FPT, 17 Duy Tân, Q. Cầu Giấy, Hà Nội
  • info@funix.edu.vn
  • 0782313602 (Zalo, Viber)        
Chat Button
FUNiX V2 GenAI Chatbot ×

yêu cầu gọi lại